

International Journal of Current Research and Academic Review

ISSN: 2347-3215 Volume 3 Number 4 (April-2015) pp. 32-36 www.ijcrar.com

Biodiversity of angiosperms in Poomalai hill of Thiruvannamalai District, Tamilnadu, India

B. Sankaran^{1*}, S.Disticraj² and G.Pandian³

¹Post graduate and Research Department of Botany, Presidency College, Chennai, India
²Arignar Anna Government Arts College, Cheyyar, India
³Post Graduate and Research Department of Botany, GAC, Thiruvannamalai, India
*Corresponding author

KEYWORDS	A B S T R A C T
Angiosperm,	Angiosperms are the most important group among the plant kingdom. It has
Altitude,	become very essential for human kind to tap the vast potentials of diverse
Biodiversity,	species of angiosperms available in the world. Researches on biodiversity
Families,	facilitate to identify and know the distribution and availability of such
Megadiverse	taxonomically important species. An attempt was made to study the
nations,	angiosperm diversity of Poomalai hill in Thiruvannamalai district. The plants
Species	were collected from the study area and identified. The total number of species
diversity,	identified was 63 belonging to 35 families. Amongst the 63 identified species,
Tropical	41 were found to be economically important.

Introduction

The tropical regions of the world, generally dominate in species diversity. India being a sub-tropical nation, in different regions there is a rich flora and fauna. The range of mixture of varying ecosystems, climatic conditions and physical features supports its rich diversity. India is one among the 17 Megadiverse identified nations bv Conservation International in 1998 (www.biodiversitya-z.org). Angiosperms are group of plants that dominates among the plant kingdom. The total number of angiosperms worldwide accounts to around 15000 17000 2.5 lakhs. About _ angiosperms are present in India.

Being a megadiverse nation, India provides a vast scope to study angiosperm diversity. The study of flowering plant is easier in plains as compared to the hills. It is difficult to study the diversity of hills. Hills in tropical regions are rich in species diversity. Many researchers have explored altitudinal biodiversity patterns of plants and clarified that altitude has a role in regulating species richness patterns (Kessler, 2000; Grytnes, 2003; Oommen and Shanker, 2005). Hills are vast reservoirs of angiosperm species as they are least explored and away from human occupation. The diversity of hills differs at different elevations. This is due to different conditions at different elevations. Altitude is an important factor in habitat diversity because it presents changes in the availability of resources, such as heat and water (Körner, 2000). Extensive study of angiosperms in various hills of India will help in identification of new species.

Many natural grass lands have been destroyed or deteriorated by overgrazing (Wang et al., 2003). Areas at higher altitudes are more likely to be a refuge for large numbers of species, because human impact decreases almost monotonically with increased altitude (Nogues-Bravo et al., 2008). Ohtsuka et al. (2008) studied vegetation properties along an altitudinal gradient ($4 \Box 400 - 5 \Box 300$ m) on the Tibetan Plateau and found that the vegetation cover decreased on lower parts of the slope, most likely because grazing intensity is greater at lower altitudes. Zhang and Mi (2007) reported monotonically increasing trends in species richness with increasing altitude between $2 \square 100$ and $3 \square 050$ m in northern China.

Materials and Methods

Study region

Angiosperm vegetation investigation was carried out in Poomalai hill. It is situated in Sirupakkam village of Thiruvannamalai district, Tamilnadu, India. The study was carried out for a period of one year from August 2010 to July 2011. The altitude of the hill is approximately 1500 - 2000 feet.

Methodology

The floral study was carried out by splitting the altitude into lower, middle and upper

strata. The study was performed by a periodic visit to the hill every week. The materials taken during the study period were plant cutter, pegs, thread, hammer, scale, vasculum, newspapers, field note book, etc. each specimens of and every The angiosperm plant species were collected tagged and preserved. Preliminary identification of the collected specimens was made in the field. A few species which were difficult to identify, were identified with the help of taxonomic experts. The Herbarium sheets were prepared for all the plants collected from the hill. Flora of Presidency of Madras (Gamble, 1993) and Flora of Tamil Nadu Carnatic (Matthew, 1985) were used for identification and authentication of the plants.

Results and Discussion

The study of vegetation of Poomalai hills of Thiruvannamalai District. Tamilnadu revealed the angiosperm species diversity. About 63 species (Table) of angiosperms were identified from the hill. Among which, about 54 species belong to dicots and 9 species belong to monocots. The list of species with their respective families is tabulated below. Among the species identified from the hills, a majority of them were found to be economically and medicinally valuable.

Conclusion

The present study has showed that Poomalai hill (Thiruvannamali district) has rich angiosperm diversity. The hill harbours good species diversity at different elevations. The plants present in the hill have many economically important species.

S.No.	Species	Family	Tamil name
1	Abrus precatorius L.	Fabaceae	Gundumani
2	Acacia nilotica (L.) Delile.	Mimosaceae	Karuvaelam
3	Achyranthes aspera L.	Amaranthaceae	Naayuruvi
4	Aegle marmelos (L.) Corr. Serr.	Rutaceae	Vilvam
5	Aerva lanata (L.) A. L. Juss. ex Schultes	Amaranthaceae	Sirupoolai
6	Agave angustifolia Harv.	Agavaceae	
7	Aloe vera (L.) Burm. f.	Agavaceae	Katthazhai
8	Anisomeles malabarica (L.) R.Br. ex Sims.	Lamiaceae	Periyamarutti
9	Aristida setacea Retzius.	Poaceae	Thodappa Pul
10	Azadirachta indica Adr. Juss.	Meliaceae	Veppam
11	Barleria prionitis L.	Acanthaceae	Kaatu Kanakambaram
12	Bauhinia racemosa Lam.	Caesalpiniaceae	Atthi or Thathaki
13	Boerhavia diffusa L.	Nyctaginaceae	Mookirattai
14	Bougainvillea spectabilis Willdenow.	Nyctaginaceae	Paper Poo
15	Calotropis gigantea (L.) Ait. f.	Asclepiadaceae	Erukku
16	Capparis zeylanica Linn.	Capparidaceae	Aadondai
17	Cardiospermum helicacabum L.	Sapindaceae	Mudakkathaan
18	Carissa spinarum Linn.	Apocynaceae	Kalaa
19	Cassia auriculata Linn.	Caesalpiniaceae	Aavaarai
20	Cassytha filiformis Linn.	Lauraceae	Antharakodi
21	Cissus quadrangularis Linn.	Menispermaceae	Perandai
22	Clitoria ternatea L.	Fabaceae	Sangu Poo
23	Coccinia indica Wight & Arn.	Cucurbitaceae	Kovai
24	Cymbopogon martini (Roxb.) J. F. Wat.	Poaceae	Kaavattam Pul
25	Cynodon dactylon (L.) Pers.	Poaceae	Arugam pul
26	Cyperus corymbosus Rottb.	Cyperaceae	Kottikara Pul
27	Euphorbia hirta Linn.	Euphorbiaceae	Ammaan Paccharisi
28	Gloriosa superba L.	Liliaceae	Kalappai Kizhangu
29	Hemidesmus indicus (L.) R. Br.	Asclepiadaceae	Nannaari
30	Ipomoea carnea Jacq.	Convolvulaceae	Kaataamanakku
31	Justicia gendarussa Burm. f.	Acanthaceae	Kaaranocchi
32	Lantana camara L.	Verbenaceae	Unnichedi
33	Leucas aspera (Willdenow) Link.	Lamiaceae	Thumbai
34	Melia azedarach L.	Meliaceae	Malaivembu
35	Millingtonia hortensis Linnaeus f.	Bignoniaceae	Maramalli
36	Mimusops elengi L.	Sapotaceae	Magizham
~-			

Table.1 List of species identified from poomalai hill

Aizoaceae

Parpaadagam

Mollugo cerviana (L.) Ser.

37

38	Morinda tinctoria Roxb.	Rubiaceae	Manjanunaa
39	Mukia maderaspatana (Linn.) M.J. Roem.	Cucurbitaceae	Musumusukkai
40	Murraya koenigii (L.) Sprengel.	Rutaceae	Kariveppilai
41	Ocimum sanctum Linn.	Lamiaceae	Tulsi
42	Opuntia dillenii (Ker-Gawl.) Haw.	Cactaceae	Chappathikalli
43	Pergularia daemia (Forsskal) Chiov.	Asclepiadaceae	Vaelipparutthi
44	Phoenix humilis, Cavan.	Arecaceae	Malai Icchai
45	Phoenix sylvestris (L.) Roxb.	Arecaceae	Periya Icchai
46	Phyllanthus amarus Schumach. & Thonn.	Euphorbiaceae	Keelkaay nelli
47	Phyllanthus niruri L.	Euphorbiaceae	Keezha nelli
48	Pithecellobium dulce (Roxb.) Benth.	Mimosaceae	Kodukkapalli kaa
49	Polyalthia cerasoides (Roxb.) Bedd.	Annonaceae	Nedumarai
50	Pongamia pinnata (L.) Pierre.	Fabaceae	Pungam
51	Prosopis juliflora (Sw.) DC.	Mimosaceae	Kaatu Karuvaelam
52	Ruellia tuberosa L.	Acanthaceae	Tapas Kaay
53	Sarcostemma intermedium R. Br.	Asclepiadaceae	Kondappaala
54	Sida acuta Burm. f.	Malvaceae	Karunelli
55	Solanum trilobatum Linn.	Solanaceae	Thoothuvalai
56	Stachytarpheta indica Vahl.	Verbenaceae	Seemai Naayuruvi
57	Strychnos nux-vomica L.	Loganiaceae	Yetti
58	Tephrosia purpurea (L.) Pers.	Fabaceae	Kaatu Kozhinji
59	Toddalia asiatica (Linnaeus) Lamarck.	Rutaceae	Kindumullu
60	Tridax procumbens L.	Asteraceae	Thatha Poondu
61	Vernonia cinerea (L.) Less.	Asteraceae	Siru Sengalaneer
62	Zizyphus rugosa Lam.	Rhamnaceae	Thodari
63	Zizyphus mauritiana Lam.	Rhamnaceae	Elandai

Int.J.Curr.Res.Aca.Rev.2015; 3(4):32-36

References

- Gamble, J.S. 1993. Flora of the Presidency of Madras. Vol I-III, Bishen Singh Mahendra Pal Singh, Dehra Dun, India.
- Grytnes, J.A. 2003. Species-richness patterns of vascular plants along seven altitudinal transects in Norway. *Ecography*, 26: 291–300.

http://www.biodiversitya-z.org/areas/26

Kessler, M. 2000. Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. *Plant Ecol.*, 149: 181–93.

- Körner, C. 2000. Why are there global gradients in species richness? Mountains might hold the answer. *Trend Ecol. Evol.*, 15: 513–514.
- Matthew, K.W. 1985. The flora of Tamil Nadu. Carnatic, The Rapinet Herbarium, St. Josephs College, Tiruchirapalli, India.
- Nogues-Bravo, D., Araujo, M.B., Romdal, T. 2008. Scale effects and human impact on the elevational species

richness gradients. *Nature*, 453: 216–18.

- Ohtsuka, T., Hirota, M., Zhang, X. 2008. Soil organic carbon pools in alpine to nival zones along an altitudinal gradient (4400–5300 m) on the Tibetan Plateau. *Polar Sci.*, 2: 277– 85.
- Oommen, M.A., Shanker, K. 2005. Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants. *Ecology*, 86: 3039–47.
- Wang, G.H., Zhou, G.S., Yang, L.M., Li, Z.Q. 2003. Distribution, species diversity and life form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. *Plant Ecol.*, 165(2): 169–181.
- Zhang, J.T., Mi, X.C. 2007. Diversity and distribution of high-mountain meadows across elevation gradient in Wutai mts. (north China). *Pol. J. Ecol.*, 55: 585–93.