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A B S T R A C T  

Volatile Organic Compounds (VOCs) are among the most common air 
pollutants emitted from chemical, petrochemical and allied industries. VOCs 
are one of the main sources of photochemical reaction in the atmosphere 
leading to various environmental hazards. Growing environmental awareness 
has put up stringent regulations to control VOC emissions. To heed to these 
regulations, there is often a requirement to monitor VOC concentrations. In 
this study we measured and analysed aggregate concentrations of VOC and 
their individual components at an industrial lagoon in North-West of 
England. Measurements were conducted at various boreholes on the site; 
however, for the purpose of this paper only two boreholes were considered, 
the one closest to the chemical company and one at some distance from it. 
The aggregate concentrations of VOCs were obtained using an in-borehole 
gas monitor called Gasclam whilst a Tenax TA sorbent tube incorporated into 
and to work in parallel with this instrumentation was used to adsorb bulk 
concentration of VOCs and subsequently desorbed (for characterisation) 
using thermal desorption/gas chromatography-mass spectroscopy (TD/GC-
MS) technique. Gasclam results show VOCs in the borehole closer to the 
chemical company to exhibit a broader range and have higher average 
concentrations. The values range from 169 ppm to 1964 ppm for the former 
borehole and 168 ppm 3974 ppm in the latter borehole. Whilst the former has 
average VOCs concentration of 846 ppm; the latter has 2241 ppm as its 
average over the monitoring period. The total concentration of adsorbed 
VOCs in Borehole 1 is 2.38x 102mg/m3 whilst in Borehole 2; it is 2.42x 
102mg/m3. Among the identified VOCs are those considered to be hazardous 
to health such as tetrachloroethylene, trichloroethylene, chloroethylene, 
toluene, chlorofluorobenzene, benzene, xylene, and ethylbenzene. However, 
this site does not constitute an immediate health risk as there is no available 
exposure pathway and a receptor. 
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Introduction  

Volatile organic compounds (VOCs) are a 
group of organic compounds containing one 
or more carbon atoms and whose vapour 
pressures are high enough to cause them to 
readily volatilise into the atmosphere 
conditions (Pankow, 1987; U.S. EPA, 1992). 
VOC emissions result from natural and 
anthropogenic (man-made) sources. Natural 
sources of VOCs include vegetation, forest 
fires and animals (Lemieux et al., 2004; 
Buzcu and Fraser, 2006). Although natural 
sources of VOC emissions are more overall 
(Guenther et al., 1995), there are 
anthropogenic sources in populated and 
industrialized areas that are another 
contributors to air quality. The major 
anthropogenic sources of VOCs are 
vehicles, the use of solvents and solvent 
containing products, and industrial and 
agricultural sources (Fenger, 1999; 
Schiffman et al., 2001; Klemp et al., 2002; 
Folsom and Allen, 2005).  

The major symptoms linked to exposure to 
some VOCs with adverse effects for humans 
and animals comprise conjunctive irritation, 
nose and throat discomfort, headache, 
allergic skin reaction, nausea, emesis, 
epistaxis, fatigue and dizziness (Jones, 
1999). The potency of organic chemicals to 
cause health effects varies greatly from 
those that are highly toxic, to those with no 
known health effect (Eljarrat and Barcelo, 
2003). As with other pollutants (such as 
persistent, bioaccumulative and toxic 
substances /PBTs/), the extent and nature of 
the health effect will depend on many 
factors including time and intensity of 
exposure. Eye and respiratory tract irritation, 
headaches, and memory impairment are 
among the immediate symptoms that some 
people have soon after exposure to some 
volatile organics (Guo et al., 2004). At 
present, little is known about what health 

effects occur from the levels of organics 
usually found in the indoor and outdoor 
atmosphere. Many organic compounds are 
known to cause cancer in animals; some are 
suspected human carcinogens (IARC, 1987, 
1999a, b, 2004).  

Among the VOCs that are significant in 
impacted environmental systems are 
chlorinated solvents such as carbon 
tetrachloride, tetrachloroethylene, and 
trichloroethylene (TCE), and their 
degradation compounds), fuel hydrocarbons 
such as benzene, toluene, ethylbenzene and 
o,m,p-xylenes as well as volatile pesticides 
such as chlordane, aldrin and lindane 
(Tillman and Weaver, 2005). The U.S 
Environmental Protection Agency lists 107 
compounds whose toxicity and volatility 
produce a potentially unacceptable 
inhalation risk to receptors (Environmental 
Quality Management 2003). These VOCs 
can be released into the subsurface 
environment from leaking landfill liners, 
improper disposal, accidental spillage, or 
leaking underground storage tanks (LUSTs) 
(Tillman and Weaver, 2005).   

Once in the subsurface, these compounds 
can become bound to the soil matrix, 
dissolved in groundwater (or soil water) 
and/or exist as a separate, residual phase 
known as a non-aqueous phase liquid 
(NAPL). Soil, aqueous, and NAPL-phase 
organics may all be sources of organic 
vapours in the subsurface. Therefore, 
organic vapour transport in the unsaturated 
zone requires understanding of interphase 
mass-transfer processes as the contaminant 
can be distributed between soil gas, water, 
soil, and NAPL phases.  

The aim of this work is to characterised 
volatile organic compounds within an 
industrial lagoon site in the North-West of 
England in order to determine their 
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specificity and quantity. Whilst specific 
VOCs would help to determine whether they 
are amongst the ones considered to be 
hazardous to health, their quantity on the 
other hand would determine if they have 
passed the regulatory limits.   

Site description  

Construction of the lagoons began in 1958 
and they stopped receiving waste in 1998, so 
they were operational for about 40yrs. The 
site was used for the disposal of waste 
materials which contained chlorinated 
hydrocarbons in accordance with a Waste 
Management Licence. The site is now 
closed. It covers an area of about 16ha and is 
bounded to the south by a river and to the 
north by a canal. The adjacent chemical 
manufacturing site has been in operation for 
over 100yrs.  It has been owned by a 
different company since 2000.  

Materials and Methods  

The Gasclam was designed to operate 
remotely; specifically in 50 mm ID 
monitoring wells. It monitors and records 
the following: CH4, CO2, O2, CO, H2S, 
VOC, atmospheric pressure, borehole 
pressure, pressure differential, temperature 
and water level. It is made from stainless 
steel and is also intrinsically safe. It is 
environmentally sealed and has ingress 
protection rated IP-68. The Gasclam is 
battery operated and can be powered for up 
to three months whilst operating on an 
hourly sampling frequency. Target 
applications for the Gasclam ground gas 
monitor include landfill for long term 
profiling, brown field sites for development 
issues, monitoring for coal mine fires, 
leakage of crude/petroleum, solvent storage 
and filling stations, oil refineries for local 
compliance/regulation, and for below 

ground carbon capture and storage 
monitoring regime (Pankow, 1987).   

The Gasclam has the following technical 
information: (i) it has a memory which can 
record and store 65,000 time/date stamped 
readings, (ii) it weighs 7kg (13.2 lbs), (iii) It 
has overall length of 85cm (33.5 inches), 
(iv) the head diameter is 10.8 cm (4.25 
inches), (v) its operation temperature range 
is 5 to +50 °C or 41°F to 122°F, (vi) it is 
powered by Duracell 1.5v LR20 MN1300 
cells or a rechargeable battery pack.  

Two Gasclam units with PID sensors were 
modified by incorporating a sorption tube 
containing Tenax TA (poly-2, 6-diphenyl-p-
phenylene oxide) adsorbent (Markes 
International).  This particular sorbent was 
chosen based on its outstanding selective 
properties in adsorption and desorption of 
VOCs over others gases (Kroupa et al., 
2004). These properties include high thermal 
stability (Brown, 1996), high hydrophobicity 
and rapid desorption kinetics (Barro et al., 
2009; Lee et al., 2006; Singer et al., 2007; 
Schripp et al., 2007; Barro et al., 2005; Saba 
et al., 2001), high breakthrough volume 
(Baya and Siskos, 1996; Rothweiler and 
Wager, 1991; Borusiewicz and Zi ba-Palus, 
2007; Camel and Caude, 1995; Ras and 
Borrull, 2009; Gallego et al., 2010), 
inertness towards most pollutants, high 
mechanical strength, and a good adsorption 
range of VOCs (Woolfenden, 2010). It has a 
surface area of 35m2 g-1 and a pore volume 
of 2.4 cm3 g-1 (Kroupa et al., 2004).    

VOCs adsorbed on Tenax TA sorbent tube 
are analysed by thermal desorption /gas 
chromatography mass spectroscopy 
(TD/GC-MS); a method which has already 
been standardised internationally (ISO 
16000-6, 2004).   
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In-situ VOC sample collection  

The two units were installed to monitor 
continuously on hourly sampling intervals 
for up to one month. The in-situ continuous 
data from the PID was downloaded while 
the sorbent tube was removed from the 
Gasclam and sealed for subsequent GC-MS 
analysis. The summation of the in-situ PID 
data from the Gasclam shows that the total 
VOC concentration adsorbed onto the 
sorbent material during the entire 
monitoring period 138780 ppm and 118020 
ppm for boreholes 1 and 2 respectively. The 
sorbent tubes were subsequently analysed 
ex-situ for specific VOCs by thermal 
desorption Gas Chromatography/Mass 
Spectrometry (TD/GC-MS).  

Ex-situ sample analysis  

Analyses of the samples were conducted by 
heating the sorbent tube to 300oC. The 
volatile components were then trapped on a 
cold trap, held at -10oC, prior to desorption 
onto the GC column. Desorption of the TD 
tubes was carried out using a Markes 
International 50:50 TD system coupled to an 
Agilent GC/MS. Data acquisition in 
scanning mode was via a PC running 
Agilent Chemstation software.  

The mass of each of the identified VOCs 
was calculated relative to the standard by 
assuming that the area of their peaks on the 
chromatogram is proportional to their 
masses. The relationship is shown below:  

Ais/Qis = Ax/Qx   (1).  

Where Ais is the area of internal standard on 
the chromatogram, Qis is the amount of 
internal standard = 500ng, Ax is the area of 
specific VOC on the chromatogram and Qx 

is the amount of specific VOC =? The 

VOCs analytical result is shown in the 
appendix.  

Results and Discussion  

The multi-parameter time series data 
obtained from the studied site. The figures 
represent datasets collected from boreholes 
1 and 2 respectively. As observed, they 
showed changes in VOCs concentrations 
which are in the ranges of 169 ppm to 1964 
ppm in borehole 1 and 168 ppm to 3974 
ppm in borehole 2. The aggregate 
concentration of VOCs over the monitoring 
period is 846 ppm and 2241 ppm in 
boreholes 1 and 2 respectively. This shows 
that the concentration of VOCs in borehole 
2 is about 3 times that in borehole 1.  

The total concentration of adsorbed VOCs in 
Borehole 1 is 2.38 x 102 mg/m3 whilst in 
Borehole 2; it is 2.42x 102mg/m3. 
Tetrachloroethylene and 3,5-dimethyloctane 
have the highest and lowest concentrations 
of 28.8 mg/m3 (12.1%) and 7.97 x 10-2 

mg/m3 (0.034%) respectively among the 
identified VOCs in Borehole 1; whilst in 
Borehole 2, the highest concentration of 
43.4 mg/m3 (17.9%) was recorded for 
tetrachloroethylene and the lowest 
concentration of 2.06 x 10-2 mg/m3 (0.009%) 
for chloroethylene.  

Most of the identified VOCs are among 
USEPA list of 107 compounds whose 
toxicity and volatility produce a potentially 
unacceptable inhalation risk to receptors. 
However, the risk of anyone being exposed 
to a significant amount of the contaminant is 
very low/negligible.  This is because; the 
potential for exposure is during sampling 
which is a controlled and managed process.  
Therefore, it cannot be concluded that these 
wells are potentially dangerous. The result 
also shows that the total concentration of 
VOCs adsorbed from Borehole 1 is 
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approximately 0.5 times higher than that 
from Borehole 2. This implies that although 
the 2 boreholes contain hazardous VOCs, 
Borehole 1 is actually more dangerous on 
the basis of the quantity of these VOCs it is 

contaminated with. This type of information 
can be helpful during risk assessment in 
understanding the regime and distribution of 
VOCs at different locations on a given site.  

Table.1 Volatile organic compounds analytical results sample: H 148953 (Borehole 1)  

S/N Name of compounds Individual 
TIC peak 

Area 

Total mass 
(mg) 

Total 
concentratio

n (mg/m3) 

% of the 
total area 

Cumulative 
% of total 

area 
1 Tetrachloroethylene 3.94E+09 1.41E-01 2.88E+01 1.21E+01 1.21E+01 

2 Trichloroethylene 2.50E+09 8.96E-02 1.83E+01 7.69E+00 1.98E+01 

3 1,2-Dichloroethane 2.18E+09 7.81E-02 1.59E+01 6.70E+00 2.65E+01 

4 Undecane 7.77E+08 2.78E-02 5.68E+00 2.39E+00 2.89E+01 

5 Dichloromethylene 5.86E+08 2.10E-02 4.29E+00 1.80E+00 3.07E+01 

6 1,1-Dichloroethylene 4.61E+08 1.65E-02 3.37E+00 1.42E+00 3.21E+01 

7 Toluene 4.53E+08 1.63E-02 3.32E+00 1.39E+00 3.35E+01 

8 1,1-Dichloroethane 4.19E+08 1.50E-02 3.07E+00 1.29E+00 3.48E+01 

9 trans-1,2-Dichloroethylene 4.15E+08 1.49E-02 3.04E+00 1.28E+00 3.61E+01 

10 1,2-Dichloroethylene 3.92E+08 1.41E-02 2.87E+00 1.21E+00 3.73E+01 

11 1-Methyldecahydronaphthalene 3.57E+08 1.28E-02 2.61E+00 1.10E+00 3.84E+01 

12 2-Methyldecahydronaphthalene   3.30E+08 1.18E-02 2.41E+00 1.01E+00 3.94E+01 

13 Trichloromethane 3.05E+08 1.09E-02 2.23E+00 9.38E-01 4.03E+01 

14 2-Methyldecane 2.49E+08 8.93E-03 1.82E+00 7.66E-01 4.11E+01 

15 Decane 2.42E+08 8.68E-03 1.77E+00 7.45E-01 4.18E+01 

16 3-Butyl-cyclohexanone 2.32E+08 8.33E-03 1.70E+00 7.14E-01 4.26E+01 

17 3-Methyldecane 2.26E+08 8.12E-03 1.66E+00 6.96E-01 4.32E+01 

18 trans-Decahydronaphthalene 2.01E+08 7.20E-03 1.47E+00 6.18E-01 4.39E+01 

19 Dodecane 2.00E+08 7.16E-03 1.46E+00 6.14E-01 4.45E+01 

20 2-Piperidinone, N-[4-bromo-n-
butyl]- 

1.95E+08 7.00E-03 1.43E+00 6.00E-01 4.51E+01 

21 2-Ethyl-1-dodecanol 1.95E+08 6.99E-03 1.43E+00 6.00E-01 4.57E+01 

22 Chloroethylene 1.81E+08 6.51E-03 1.33E+00 5.58E-01 4.62E+01 

23 1-Methyl-2-propylcyclohexane 1.76E+08 6.31E-03 1.29E+00 5.41E-01 4.68E+01 

24 3,3-Dimethyloctane 1.75E+08 6.26E-03 1.28E+00 5.37E-01 4.73E+01 

25 Methylcyclohexane 1.74E+08 6.25E-03 1.28E+00 5.36E-01 4.79E+01 

26 p-Xylene 1.68E+08 6.02E-03 1.23E+00 5.17E-01 4.84E+01 
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27 2,6-Dimethyloctane 1.58E+08 5.65E-03 1.15E+00 4.84E-01 4.89E+01 

28 Tetradecana 1.56E+08 5.58E-03 1.14E+00 4.78E-01 4.93E+01 

29 3,5-Dimethylheptane 1.55E+08 5.57E-03 1.14E+00 4.78E-01 4.98E+01 

30 2-Butyl-1-octanol 1.52E+08 5.46E-03 1.11E+00 4.68E-01 5.03E+01 

31 3-Methyloctane 1.49E+08 5.33E-03 1.09E+00 4.57E-01 5.07E+01 

32 2-Methylundecane 1.44E+08 5.16E-03 1.05E+00 4.42E-01 5.12E+01 

33 2-Tetradecyloxirane   1.42E+08 5.10E-03 1.04E+00 4.38E-01 5.16E+01 

34  Carbon Tetrachloride 1.40E+08 5.02E-03 1.03E+00 4.31E-01 5.20E+01 

35 3-Ethylhexane 1.31E+08 4.71E-03 9.61E-01 4.04E-01 5.24E+01 

36 Phytol 1.29E+08 4.62E-03 9.44E-01 3.97E-01 5.28E+01 

37 1,1,1,2-Tetrachloroethane 1.29E+08 4.62E-03 9.43E-01 3.96E-01 5.32E+01 

38 4-Methyldecane 1.25E+08 4.48E-03 9.14E-01 3.84E-01 5.36E+01 

39 2-Methylheptane 1.22E+08 4.39E-03 8.95E-01 3.76E-01 5.40E+01 

40 2,5-Dimethylheptane 1.18E+08 4.24E-03 8.64E-01 3.63E-01 5.44E+01 

41 2-Hexyl-1-octanol 1.18E+08 4.23E-03 8.63E-01 3.63E-01 5.47E+01 

42 1,5-Diisopropyl-2,3-
dimethylcyclohexane   

1.15E+08 4.11E-03 8.40E-01 3.53E-01 5.51E+01 

43 cis-1,3-Dimethylcyclohexane 1.14E+08 4.09E-03 8.35E-01 3.51E-01 5.54E+01 

44 4-Chloroheptane 1.07E+08 3.82E-03 7.80E-01 3.28E-01 5.58E+01 

45 Ethylcyclohexane 1.06E+08 3.81E-03 7.77E-01 3.26E-01 5.61E+01 

46 1,2-Diethyl-1-methylcyclohexane   1.06E+08 3.79E-03 7.73E-01 3.25E-01 5.64E+01 

47 3-Methylundecane 1.05E+08 3.76E-03 7.67E-01 3.22E-01 5.67E+01 

48 Nonane 1.02E+08 3.66E-03 7.47E-01 3.14E-01 5.70E+01 

49 1-Ethyl-2-propylcyclohexane   9.84E+07 3.53E-03 7.20E-01 3.03E-01 5.73E+01 

50 1,2-Dipropylcyclopentane   9.77E+07 3.50E-03 7.15E-01 3.01E-01 5.76E+01 

51 3-Ethyl-2-methylheptane 9.77E+07 3.50E-03 7.15E-01 3.00E-01 5.80E+01 

52 4-Methyloctane 9.74E+07 3.49E-03 7.13E-01 2.99E-01 5.82E+01 

53 2,3-Dimethyldecane 9.52E+07 3.41E-03 6.96E-01 2.93E-01 5.85E+01 

54 sec-Butylcyclohexane 9.06E+07 3.25E-03 6.63E-01 2.79E-01 5.88E+01 

55 3-Butyl-cyclohexanone 8.88E+07 3.19E-03 6.50E-01 2.73E-01 5.91E+01 

56 1-Methyl-2-propylcyclopentane   8.82E+07 3.16E-03 6.45E-01 2.71E-01 5.94E+01 

57 2-Butyl-1-octanol 8.79E+07 3.15E-03 6.43E-01 2.70E-01 5.96E+01 

58 2-Methyloctane 8.52E+07 3.06E-03 6.24E-01 2.62E-01 5.99E+01 

59 4-Ethyl-2,3-dimethyl-2-hexene   8.37E+07 3.00E-03 6.13E-01 2.57E-01 6.02E+01 
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60 2-Octyldecan-1-ol 8.32E+07 2.99E-03 6.09E-01 2.56E-01 6.04E+01 

61 2,6,10-Trimethyldodecane 8.30E+07 2.98E-03 6.08E-01 2.55E-01 6.07E+01 

62 4-Methylheptane 7.88E+07 2.82E-03 5.76E-01 2.42E-01 6.09E+01 

63 trans-1-Ethyl-3-
Methylcyclopentane 

7.44E+07 2.67E-03 5.45E-01 2.29E-01 6.11E+01 

64 4-Methyl-1-heptene 7.30E+07 2.62E-03 5.34E-01 2.24E-01 6.14E+01 

65 1,1,4-Trimethylcyclohexane 7.12E+07 2.55E-03 5.21E-01 2.19E-01 6.16E+01 

66 4-Methylnonane 6.98E+07 2.50E-03 5.11E-01 2.15E-01 6.18E+01 

67 3-Methylhexane 6.57E+07 2.35E-03 4.81E-01 2.02E-01 6.20E+01 

68 3-Methylnonane 6.44E+07 2.31E-03 4.71E-01 1.98E-01 6.22E+01 

69 cis-1-Ethyl-3-methylcyclohexane 6.31E+07 2.26E-03 4.62E-01 1.94E-01 6.24E+01 

70 1-Methyl-3-propylcyclooctane   6.29E+07 2.25E-03 4.60E-01 1.93E-01 6.26E+01 

71 Propylcyclohexane 6.12E+07 2.20E-03 4.48E-01 1.88E-01 6.28E+01 

72 1-Nonadecanol 6.12E+07 2.19E-03 4.48E-01 1.88E-01 6.30E+01 

73 cis-1-Ethyl-4-methylcyclohexane 6.08E+07 2.18E-03 4.45E-01 1.87E-01 6.31E+01 

74 4,5-Diethyloctane   6.02E+07 2.16E-03 4.41E-01 1.85E-01 6.33E+01 

75 6,10,13-Trimethyl-1-tetradecanol   6.00E+07 2.15E-03 4.39E-01 1.85E-01 6.35E+01 

76 2-Octyldecan-1-ol 5.85E+07 2.10E-03 4.28E-01 1.80E-01 6.37E+01 

77 Ethylbenzene 5.84E+07 2.09E-03 4.27E-01 1.79E-01 6.39E+01 

78 Cyclohexanepropanol- 5.36E+07 1.92E-03 3.93E-01 1.65E-01 6.40E+01 

79 Diisooctyl phthalate 5.11E+07 1.83E-03 3.74E-01 1.57E-01 6.42E+01 

80 1-Ethyl-2,3-dimethylcyclohexane   4.77E+07 1.71E-03 3.49E-01 1.47E-01 6.43E+01 

81 2,7-Dimethyloctane 4.57E+07 1.64E-03 3.34E-01 1.41E-01 6.45E+01 

82 1-Bromo-4-chloro-2-fluorobenzene 4.45E+07 1.60E-03 3.26E-01 1.37E-01 6.46E+01 

83 1-Ethyl-2-propylcyclohexane   4.38E+07 1.57E-03 3.20E-01 1.35E-01 6.48E+01 

84 2,5-Dimethyloctane 4.36E+07 1.57E-03 3.19E-01 1.34E-01 6.49E+01 

85 1-Ethyl-2-methylcyclohexane 4.16E+07 1.49E-03 3.04E-01 1.28E-01 6.50E+01 

86 2,4,6-Trimethylheptane 4.02E+07 1.44E-03 2.94E-01 1.24E-01 6.51E+01 

87 1,2,3-Trimethylcyclohexane 3.97E+07 1.42E-03 2.90E-01 1.22E-01 6.53E+01 

88 2-Bromomethyl-3,4-dihydro-2H-
pyran 

3.87E+07 1.39E-03 2.83E-01 1.19E-01 6.54E+01 

89 1,2-Dimethyl-1-cyclooctene   3.84E+07 1.38E-03 2.81E-01 1.18E-01 6.55E+01 
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90 trans-1,2,3-Trimethylcyclohexane 3.76E+07 1.35E-03 2.75E-01 1.16E-01 6.56E+01 

91 1-Pentyl-2-propylcyclopentane   3.75E+07 1.34E-03 2.74E-01 1.15E-01 6.57E+01 

92 1,2,4-Trimethylcyclopentane   3.66E+07 1.31E-03 2.68E-01 1.13E-01 6.58E+01 

93 2-Ethyl-1,3-dimethylcyclohexane 3.56E+07 1.28E-03 2.61E-01 1.10E-01 6.60E+01 

94 1-Isopropyl-3-methylcyclohexane   3.52E+07 1.26E-03 2.57E-01 1.08E-01 6.61E+01 

95 2-Hexyl-1-decanol 3.50E+07 1.25E-03 2.56E-01 1.07E-01 6.62E+01 

96 1,2,4-Trimethylcyclohexane 3.44E+07 1.23E-03 2.52E-01 1.06E-01 6.63E+01 

97 trans-1-Isopropyl-4-
methylcyclohexane 

3.15E+07 1.13E-03 2.31E-01 9.70E-02 6.64E+01 

98 1,2-Epoxyoctadecane 2.90E+07 1.04E-03 2.12E-01 8.91E-02 6.65E+01 

99 cis-9-Octadecen-1-ol 2.50E+07 8.95E-04 1.83E-01 7.68E-02 6.65E+01 

100 1-Isopropyl-2,3-
dimethylcyclopentane   

2.45E+07 8.80E-04 1.80E-01 7.55E-02 6.66E+01 

101 (2-Methylbutyl)cyclohexane 2.43E+07 8.70E-04 1.78E-01 7.47E-02 6.67E+01 

102 3,7,11-Trimethyl-1-dodecanol 2.09E+07 7.48E-04 1.53E-01 6.42E-02 6.68E+01 

103 1,1,2,3-Tetramethylcyclohexane   1.87E+07 6.69E-04 1.37E-01 5.74E-02 6.68E+01 

104 Butylcyclopentane 1.78E+07 6.38E-04 1.30E-01 5.47E-02 6.69E+01 

105 1-Butyl-2-propylcyclopentane   1.59E+07 5.71E-04 1.16E-01 4.90E-02 6.69E+01 

106 3-Ethylheptane 1.52E+07 5.46E-04 1.11E-01 4.68E-02 6.70E+01 

107 1-Isobutyl-3-methylcyclopentane   1.29E+07 4.63E-04 9.46E-02 3.97E-02 6.70E+01 

108 3,5-Dimethyloctane 1.09E+07 3.91E-04 7.97E-02 3.35E-02 6.70E+01 

109 Unidentified compounds 1.07E+10 3.84E-01 7.84E+01 3.30E+01 1.00E+02 

 

 

PID VOCs signal 
(ppm)  

VOC mass 
(mg) 

Total vol. (m3) VOCs 
conc.(mg/m3) 

138780 1.17E+00 4.90E-03 2.38E+02 
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Table.2 Volatile organic compounds analytical results sample: H 148954 (Borehole 2)  

S/N Name of compounds Individual 
TIC peak 

Area 

Total mass 
(mg) 

Total 
concentratio

n (mg/m3) 

% of the 
total area 

Cumulative 
% of total 

area 
1 Tetrachloroethylene 4.89E+09 2.13E-01 4.34E+01 1.79E+01 1.79E+01 

2 Trichloroethylene 3.06E+09 1.33E-01 2.72E+01 1.12E+01 2.91E+01 

3 1,2-Dichloroethane 1.19E+09 5.16E-02 1.05E+01 4.34E+00 3.34E+01 

4 cis-1,2-Dichloroethylene 9.76E+08 4.24E-02 8.66E+00 3.56E+00 3.70E+01 

5 1,3-Dimethylbenzene 8.51E+08 3.70E-02 7.55E+00 3.11E+00 4.01E+01 

6 1,1-Dichloroethane 6.11E+08 2.65E-02 5.42E+00 2.23E+00 4.23E+01 

7  trans-2-Dodecen-1-ol 5.43E+08 2.36E-02 4.82E+00 1.98E+00 4.43E+01 

8 1,3-Dimethylbenzene 4.63E+08 2.01E-02 4.11E+00 1.69E+00 4.60E+01 

9 Toluene 4.47E+08 1.94E-02 3.97E+00 1.63E+00 4.76E+01 

10 1-(4-Bromobutyl)-2-piperidinone   2.66E+08 1.16E-02 2.36E+00 9.71E-01 4.86E+01 

11 1,2,4-Trimethylbenzene 2.23E+08 9.68E-03 1.98E+00 8.14E-01 4.94E+01 

12 Phytol 2.21E+08 9.62E-03 1.96E+00 8.08E-01 5.02E+01 

13 trans-1,2-Dichloroethylene 2.20E+08 9.58E-03 1.95E+00 8.05E-01 5.10E+01 

14 1-Ethyl-3-methylbenzene 2.03E+08 8.81E-03 1.80E+00 7.40E-01 5.17E+01 

15 2-Methyldecane 1.95E+08 8.47E-03 1.73E+00 7.12E-01 5.24E+01 

16 3-Methyldecane 1.64E+08 7.14E-03 1.46E+00 6.00E-01 5.30E+01 

17 Ethylbenzene 1.51E+08 6.57E-03 1.34E+00 5.52E-01 5.36E+01 

18 Dodecane 1.51E+08 6.55E-03 1.34E+00 5.50E-01 5.41E+01 

19 1-Ethyl-4-methylbenzene 1.47E+08 6.39E-03 1.30E+00 5.36E-01 5.47E+01 

20 4-Methyl-1-undecene   1.31E+08 5.67E-03 1.16E+00 4.77E-01 5.52E+01 

21 4-Methyldecane 1.25E+08 5.42E-03 1.11E+00 4.55E-01 5.56E+01 

22 1-Ethyl-2-methylbenzene 1.19E+08 5.16E-03 1.05E+00 4.33E-01 5.61E+01 

23 2-Methylundecane 1.18E+08 5.14E-03 1.05E+00 4.32E-01 5.65E+01 

24 1-Methyl-2-pentylcyclohexane 1.16E+08 5.05E-03 1.03E+00 4.24E-01 5.69E+01 

25 5-Methyldecane 1.16E+08 5.04E-03 1.03E+00 4.24E-01 5.73E+01 

26 4-Methylnonane 1.15E+08 5.02E-03 1.02E+00 4.21E-01 5.78E+01 

27 2-Hexyl-1-decanol 1.13E+08 4.93E-03 1.01E+00 4.14E-01 5.82E+01 

28 1,1-Dichloroethylene 1.10E+08 4.77E-03 9.74E-01 4.01E-01 5.86E+01 

29 Methylcyclohexane 9.32E+07 4.05E-03 8.27E-01 3.41E-01 5.89E+01 

30 4-Methyldecane 9.27E+07 4.03E-03 8.23E-01 3.39E-01 5.92E+01 
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31  2-Thiophenethiol 9.22E+07 4.01E-03 8.18E-01 3.37E-01 5.96E+01 

32 trans-Decahydronaphthalene 9.20E+07 4.00E-03 8.17E-01 3.36E-01 5.99E+01 

33 3-Methyloctane 9.10E+07 3.96E-03 8.08E-01 3.33E-01 6.03E+01 

34 2-Methylheptane 8.94E+07 3.89E-03 7.94E-01 3.27E-01 6.06E+01 

35 Pentylcyclohexane 8.52E+07 3.70E-03 7.56E-01 3.11E-01 6.09E+01 

36 2-Butyl-1-octanol 8.29E+07 3.60E-03 7.35E-01 3.03E-01 6.12E+01 

37 1,2-Dipropylcyclopentane   7.98E+07 3.47E-03 7.08E-01 2.92E-01 6.15E+01 

38 2-Hexyl-1-decanol 7.82E+07 3.40E-03 6.94E-01 2.86E-01 6.18E+01 

39 3-Methylundecane 7.50E+07 3.26E-03 6.65E-01 2.74E-01 6.20E+01 

40  2,3-Dimethyldecane 7.46E+07 3.24E-03 6.62E-01 2.72E-01 6.23E+01 

41  Dodecane 7.36E+07 3.20E-03 6.54E-01 2.69E-01 6.26E+01 

42 2,6,10-Trimethyldodecane 7.28E+07 3.17E-03 6.46E-01 2.66E-01 6.29E+01 

43 1,1,3,4-Tetrachloro-1,3-butadiene   6.99E+07 3.04E-03 6.20E-01 2.55E-01 6.31E+01 

44 Undecane 6.98E+07 3.04E-03 6.19E-01 2.55E-01 6.34E+01 

45 2,5-Dimethylheptane 6.42E+07 2.79E-03 5.70E-01 2.35E-01 6.36E+01 

46 2-Methyloctane 6.37E+07 2.77E-03 5.65E-01 2.33E-01 6.38E+01 

47 3-Methylnonane 6.28E+07 2.73E-03 5.57E-01 2.29E-01 6.41E+01 

48 4-Methyloctane 5.93E+07 2.58E-03 5.26E-01 2.16E-01 6.43E+01 

49 4-Ethyloctane 5.46E+07 2.37E-03 4.84E-01 1.99E-01 6.45E+01 

50 3-Ethylhexane 4.98E+07 2.16E-03 4.41E-01 1.82E-01 6.47E+01 

51 2,6-Dimethyloctane 4.60E+07 2.00E-03 4.08E-01 1.68E-01 6.48E+01 

52 4-Formyl-3,5-di-t-butylbenzoic 
acid 

4.12E+07 1.79E-03 3.65E-01 1.50E-01 6.50E+01 

53  Benzene 4.10E+07 1.78E-03 3.64E-01 1.50E-01 6.51E+01 

54 Bis(chloromethyl) sulfide 4.09E+07 1.78E-03 3.63E-01 1.49E-01 6.53E+01 

55 Decane 4.07E+07 1.77E-03 3.62E-01 1.49E-01 6.54E+01 

56 1-Chloro-4-fluorobenzene 4.06E+07 1.77E-03 3.61E-01 1.48E-01 6.56E+01 

57 1-Chloro-3-fluorobenzene 3.87E+07 1.68E-03 3.44E-01 1.42E-01 6.57E+01 

58 2-Methyl-1-decanol   3.81E+07 1.66E-03 3.38E-01 1.39E-01 6.59E+01 

59 3-Ethyl-2-methylheptane 3.70E+07 1.61E-03 3.29E-01 1.35E-01 6.60E+01 

60 Ethylcyclohexane 3.62E+07 1.58E-03 3.21E-01 1.32E-01 6.61E+01 

61 cis-1-Ethyl-3-methyl-cyclohexane 3.53E+07 1.54E-03 3.13E-01 1.29E-01 6.62E+01 

62 2,6-Dimethylundecane 3.48E+07 1.51E-03 3.09E-01 1.27E-01 6.64E+01 

63 Cyclooctanecarbaldehyde 3.48E+07 1.51E-03 3.08E-01 1.27E-01 6.65E+01 
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64 1,2,4-Trimethylcyclohexane 3.47E+07 1.51E-03 3.08E-01 1.27E-01 6.66E+01 

65 7-Methyl-1-undecene   3.35E+07 1.46E-03 2.97E-01 1.22E-01 6.68E+01 

66 Benzene, 1,3,5-trimethyl 3.07E+07 1.34E-03 2.73E-01 1.12E-01 6.69E+01 

67 3-Ethylhexane 3.02E+07 1.31E-03 2.68E-01 1.10E-01 6.70E+01 

68 cis-1,4-Dimethylcyclohexane 2.96E+07 1.29E-03 2.63E-01 1.08E-01 6.71E+01 

69 trans-1-Ethyl-4-
Methylcyclohexane 

2.95E+07 1.28E-03 2.62E-01 1.08E-01 6.72E+01 

70 Cyclohexanepropanol- 2.84E+07 1.24E-03 2.52E-01 1.04E-01 6.73E+01 

71 Propylcyclohexane 2.83E+07 1.23E-03 2.51E-01 1.03E-01 6.74E+01 

72 2-Propylheptanol 2.75E+07 1.19E-03 2.44E-01 1.00E-01 6.75E+01 

73 Diisooctyl phthalate 2.12E+07 9.21E-04 1.88E-01 7.74E-02 6.76E+01 

74 1-Butyl-2-propylcyclopentane   1.47E+07 6.38E-04 1.30E-01 5.36E-02 6.76E+01 

75 1-Chloro-2-fluorobenzene 1.11E+07 4.84E-04 9.88E-02 4.07E-02 6.77E+01 

76 Hexanedioic acid, dioctyl ester 4.38E+06 1.90E-04 3.89E-02 1.60E-02 6.77E+01 

77 Ethyl iso-allocholate 4.01E+06 1.74E-04 3.56E-02 1.46E-02 6.77E+01 

78 Chloroethylene 2.33E+06 1.01E-04 2.06E-02 8.50E-03 6.77E+01 

79 Unidentified compounds 8.84E+09 3.84E-01 7.84E+01 3.23E+01 1.00E+02 

 

 

PID VOCs signal 
(ppm)  

VOC mass 
(mg) 

Total vol. (m3) VOCs 
conc.(mg/m3) 

118020 1.19E+00 4.90E-03 2.43E+02 

  

Conclusions  

The concentrations of VOC in the borehole 
closer to the chemical company displayed a 
broader range and have higher average 
concentrations. The values range from 169 - 
1964 ppm for the former borehole and 168 
ppm - 3974 ppm in the latter borehole. Also 
whilst the former has average VOCs 
concentration of 846 ppm; the latter has 
2241 ppm as its average over the monitoring 
period. The identified VOCs comprise of 
those recognised to be significantly 
hazardous to health and the environment. 
They include tetrachloroethylene, 
trichloroethylene, chloroethylene, toluene, 
benzene, chlorofluorobenzene, xylene, and   

ethylbenzene. A comparison of the 
individual concentrations of VOCs in this 
site with the international standard shows 
that they have passed the set limits. 
However, the presence of contaminants does 
not immediately constitute a risk.  There 
need to be an exposure pathway and a 
receptor; but at the site, there is neither of 
these. The use of a PID/Tenax enabled 
Gasclam enables robust sub-surface VOC 
gas/vapour monitoring data enabling site 
zoning and a more effective targeting of 
remedial efforts on those zones of actual 
concern leading to savings in both time and 
money and helping to ensure that the 
remedial works are more sustainable in line 
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with current guidance. They also save 
frequent snapshot monitoring visits 
enabling a more accurate representation of 
sub-surface conditions to be obtained.  
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