Introduction

The Satpura Range is a range of hills in central India. The range rises in eastern Gujrat state near the Arabian Sea coast, running east through Maharashtra and Madhya Pradesh to Chhattisgarh. The range parallels the Vindhya Range to the north, and these two east-west ranges divide the Indo-Gangetic plane of northern India and Pakistan from the Deccan Plateau to the south. The Narmada River runs in the depression between the Satpura and Vindhya ranges, and draining the northern slope of the Satpura range and running west towards the Arabian Sea.

The Anjan River is tributaries of Narmada River, its run from Mahuljhir, Chhindwara to Sandiya Ghat of Narmada Hoshangabad. This river serves water about 5000 hec. in the crop land of Singhodi, Bankanj, Pondi, Kanhwar, Singondhi, Parkhi, Padarkha, Dungariya, Deori, Udaypura, Punaur, Sohajani, Semaritala and Mathani Villages. Pipariya is a city and a municipality in Hoshangabad district in the Indian state of Madhya Pradesh. It is famous as it is the railhead for the military station and tourist destination of Pachmarhi. Pipariya is on the
Itarsi Jabalpur rail line. Its global location is 22°45’ 2” N 78°21’ 29” E.

River pollution in India has now reached to a point of crisis due to unplanned urbanization and rapid growth of industrialization. The entire array of life in water is affected due to pollution in water. The problem of water quality deterioration is mainly due to human activities such as disposal of dead bodies, discharge of industrial and sewage wastes and agricultural runoff, which are major cause of ecological damage and pose serious health hazards (Meitei et al., 2004a). The degree of pollution is generally assessed by studying physical and chemical characteristics of the water bodies (Duran Mustafa and Menderes Suicmez, 2007). Studies related to water pollution of rivers like Godavari, Krishna and Tungbhdra (Mitra, 1982), Cauvery (Batcha Anvar, 1997), Jhelum (Raina et al., 1984), Kosi (Bhatt and Negi, 1985), Morar (Mishra and Sakseena, 1991) (Kalpi), Alaknanda (Tiwari et al., 1991), Brahmanami (Mitra, 1997), Betwa (Datar and Vashishtha, 1992), Ganga (Pandey, 1985; Singh and Rai, 1999; Sahu et al., 2000; Rao et al., 2000), Godavari (Rao et al., 1993; Rafeeq and Khan, 2002), Yamuna (Meenakshi et al., 2002; Anand Chetna et al., 2006), Pachin (Hussain and Ahmed, 2002), Irai (Sawane et al., 2004), Chambal river (Saksena et al., 2008), Tansa (Shaikh and Yeragi, 2004) and Purna (Meitei et al., 2004a; Meitei et al., 2004b) have received greater attention from time to time and during recent years. An attempt has, therefore, been made to study water pollution in river Anjan in Pipariya area.

Materials and Methods

Two sampling stations were established almost equidistantly on the stretch of Anjan River. Station Parkhi was established at Parkhi village and Station- Khaparkheda was established at Khaparkheda village. These villages were connected by a road so sampling easy for each month. The monthly samples of subsurface water were collected during the first week of each month in the early hours of the day i.e. between 7 am to 9 am Utmost care was taken to avoid spilling of water and air bubbling at the time of sample collection. Iodine treated polyethylene double Stoppard bottles were used for collection of sample. Some of the physico-chemical characteristics of water including water temperature, depth, color, transparency, flow rate, pH, dissolved oxygen, free carbon dioxide, total alkalinity, total hardness, chloride, calcium and magnesium were determined at the sampling stations, while other parameters including total dissolved solids, nitrate, nitrite, sulphate, phosphate, silicate, biochemical oxygen demand, chemical oxygen demand, ammonia, sulphide, sodium and potassium were analyzed in the laboratory within 4 to 6 hr of collection. The physico-chemical characteristics of water were analyzed according to the methods of APHA (APHA, 2005; Trivedy and Goel, 1984).

Result and Discussion

The physico-chemical characteristics provide a fair idea of the water quality in any water body. The result of the physico-chemical characteristics of Anjan river water is summarized in Table 1. Temperature is basically important for its effects on certain chemical and biological reactions taking place in water and aquatic organisms (Shrivastava and Patil, 2002). It depends upon the season (Alderfer and Lovelace, 1977), time of sampling and also upon the temperature of effluents which is being added into the river. Anjan River was given in Table 1. The lower water temperature was recorded in winter, while the highest was
recorded in summer. Similar seasonal variation in water temperature was recorded (Batcha Anvar, 1997) in river Ghaghara (Singh et al., 1999), in river Narmada (Nath and Srivastava, 2001), in river Tapti (Shrivastava and Patil, 2002) and in river Prune (Meitei et al., 2004a).

Transparency or light penetration depends on the intensity of sunlight, suspended soil particles, turbid water received from the catchment area and density of plankton etc (Mishra and Saksena, 1991; Nath and Srivastava, 2001; Singh, 1999). Transparency of river water is also affected due to total solids partly or fully decomposed organic matters, silts and turbulence caused by the currents, waves, human and cattle activities (Singh et al., 1999). Seasonal impact was also seen on water transparency indicating higher values during winter and summer seasons, whereas lower values are evident in monsoon season. The transparency values were less in monsoon season due to high current which erodes the bank of the river and due to turbid flood water, suspended matter and dissolved particles. High value of transparency was recorded in late post monsoon and winter months as has also been observed (Singh et al., 1999; Nath and Srivastava, 2001; Shaikh and Yeragi, 2004). The Flow rate of water bodies generally depends upon the amount of water available and on its depth. Mean annual flow rate in Anjan River was found to be minimum (14.60 cm sec\(^{-1}\)) at Station Parkhi in the month of February and maximum (92.80 cm sec\(^{-1}\)) at Station Sohajani in the month of September.

The pH range of 6.7 to 8.4 was observed and suitable for the growth of aquatic biota (Ellis, 1937). The water in Anjan River was always alkaline throughout the period of study. Alkaline pH was also observed (Shaikh and Yeragi, 2004) in river Tansa during whole study period, while (Varma, 1998) have observed acidic nature of water of Subernarekha river due to discharge of copper industrial effluents in this river. The pH value (7.56) was recorded similar at Station Parkhi and Sohajani.

Dissolved oxygen is one of the important parameter in water quality assessment. Its presence is essential to maintain variety of forms of biological life in the water and the effect of waste discharge in a water body is largely determined by the oxygen balance of the system. Dissolved oxygen is regulator of metabolic activities of organisms and thus governs metabolism of the biological community as a whole and also acts as an indicator of trophic status of the water body (Saksena and Kaushik, 1994). Oxygen is generally reduced in the water due to respiration of biota, decomposition of organic matter, rise in temperature, oxygen demanding wastes and inorganic reductant such as hydrogen sulphide, ammonia, nitrites, ferrous iron, etc (Sahu et al., 2000). Inorganic reducing agents such as hydrogen sulphide, ammonia, nitrite, ferrous iron and certain oxidizable substances also tend to decrease dissolved oxygen in water (Tarzwell, 1957) has suggested that a minimum of 3 mgl-1 dissolved oxygen is necessary for healthy fish and other aquatic life. In the present study, the value of dissolved oxygen was recorded as 7.45 mgl\(^{-1}\) at Station Parkhi and 6.70 mgl\(^{-1}\) at Station Sohjani. This level of oxygen in the river should be able to support good fauna and flora. Similar observation was recorded (Singh and Rai, 1999) in river Ganga, river Manjar (Hiware and Jadhav, 2001), in river Godavari (Rafeeq and Khan, 2002). The pH, alkalinity and free carbon dioxide are interrelated in aquatic ecosystems. Most of the free carbon dioxide in water comes from the decomposition of organic matter and
from respiration of organisms (Nath and Srivastava, 2001). In polluted water, the free carbon dioxide is generally high. In Anjan River, free carbon dioxide ranged from non traceable amount at stations to the value of 1.65 mgL\(^{-1}\) at Parkhi and 1.40 mgL\(^{-1}\) at Sohajani. Good oxygen saturation and low free carbon dioxide indicate no pollution load in the river at both Stations.

Chloride concentration in water indicates the presence of organic waste in water, primarily of animal origin (Thresh et al., 1949). It increases with ammonical nitrogen which also owes itself mostly to animal excreta. Chloride in Anjan River varied from 26.44mgL\(^{-1}\) at Station Parkhi and 28.50mgL\(^{-1}\) at Station Sohajani. The chloride concentration was quite low in this river which reflects that there is very less amount of organic waste of animal origin and practically no discharge of municipal and industrial wastes. The calcium is one of the most abundant substances of natural water being present in high quantities in the rocks. The disposal of sewage and industrial wastes are also important sources of calcium. The calcium level in the river varied from 11.64 to 12.40 mgL\(^{-1}\).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Station Parkhi Range of variation</th>
<th>Mean Range of variation</th>
<th>Station Sohjani Range of variation</th>
<th>Mean Range of variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water temperature</td>
<td>°C</td>
<td>16.50-30.00</td>
<td>25.57</td>
<td>14.45-29.50</td>
<td>25.60</td>
</tr>
<tr>
<td>Transparency</td>
<td>cm</td>
<td>14.60-90.00</td>
<td>66.68</td>
<td>15.50-92.80</td>
<td>68.50</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>7.8-8.7</td>
<td>7.56</td>
<td>7.5-8.7</td>
<td>7.56</td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td>mgL(^{-1})</td>
<td>5.45-10.33</td>
<td>7.45</td>
<td>4.60-10.30</td>
<td>6.70</td>
</tr>
<tr>
<td>Free carbon dioxide</td>
<td>mgL(^{-1})</td>
<td>0.00-3.40</td>
<td>1.65</td>
<td>0.00-3.20</td>
<td>1.40</td>
</tr>
<tr>
<td>Total dissolved solids</td>
<td>mgL(^{-1})</td>
<td>265.00-430.00</td>
<td>320.40</td>
<td>245.40-460.00</td>
<td>343.20</td>
</tr>
<tr>
<td>Total alkalinity</td>
<td>mgL(^{-1})</td>
<td>75.45-244.55</td>
<td>175.57</td>
<td>80.67-270.00</td>
<td>187.40</td>
</tr>
<tr>
<td>Total hardness</td>
<td>mgL(^{-1})</td>
<td>44.60-67.00</td>
<td>55.60</td>
<td>35.40-80.50</td>
<td>60.50</td>
</tr>
<tr>
<td>Chloride</td>
<td>mgL(^{-1})</td>
<td>14.34-34.45</td>
<td>26.44</td>
<td>15.68-36.70</td>
<td>28.50</td>
</tr>
<tr>
<td>Calcium</td>
<td>mgL(^{-1})</td>
<td>8.30-15.45</td>
<td>11.65</td>
<td>9.30-16.80</td>
<td>12.40</td>
</tr>
</tbody>
</table>

Table 1 Physico-chemical characteristics of Anjan river water

Conclusion

On the basis of various parameters studied, Narmada tributary Anjan River in this stretch can be placed under oligosaprobic. When various parameters of our study are compared with that of Indian standards (IS-1055, 1991) for public use, fish culture and irrigation, it was revealed that all such parameters are well within the limits (Table 1). The water characteristics considered for the study indicate that the river water in the above area is pollution free and can serve as a good habitat for many aquatic organisms including endangered species.

Acknowledgment

Author thankful to Dr. S.D. Dwivedi professor of chemistry, Bhopal and Dr. O.N. Choubey Principal, Govt. NMV.
Hoshangabad (M.P.) for providing all necessary facilities for conducting this research work. We also extend our gratitude to the Professor and Head, department of Botany Govt. PG. College, Pipariya Dr. Ravi Upadhyay and Dr. Balendra Pratap Singh for his valuable guidance and suggestions.

References

IS, 1991. Tolerance Limits for Inland Surface Waters Subject to Pollution (IS-1055: 1991), ISI New Delhi, India.

