Preliminary Phytochemical Screening and Antidermatophytic activity of Aristolochia bracteata. L

B. Yuvasri¹, K.C.P. Rajamanikandan¹,², P. Madumathi³, P.M. Ayyasamy¹ and D. Arvind Prasanth¹*

¹Department of Microbiology School of Biosciences, Periyar University, Salem-11, India
²Dept. of Biotechnology, Jairam Arts & Science College, Salem-08, India
³Department of Microbiology, IRT Medical College, Perundurai, Erode, India

*Corresponding author

ABSTRACT

The incidence of fungal infections has been increasingly reported in the recent years. This is mainly due to the advent of newer antifungal agents, increased use of immunosuppressive drugs, climatic factors and poor hygienic conditions. Dermatophyte refers to the infection caused by a group of fungi namely Trichophyton, Epidermophyton, and Microsporum. Topical and systemic therapies are commonly used in the treatment of these infections. However due to the indiscriminate usage of antifungal agents has resulted in the development of drug resistant strains. Ethnomedical plants have been used traditionally since ancient times in the treatment of these infections. In this study the phytochemical and the antidermatophytic activity of Aristolochia bracteata has been studied. The plant powder was purchased from the local Siddha medical shop was extracted with two different solvent systems and subjected to Preliminary phytochemical screening. The leaf extracts were subjected to TLC, HPTLC, MS and NMR spectra. The antidermatophytic activity of the plant extract was determined by disc diffusion method. The photochemical analysis of the plant showed phenols, flavonoids, saponin and alkaloids class of compounds. The methanol solvent was found to be the effective extraction of the bioactive fractions of the leaf. The HPTLC fractions of the leaf extracts showed Acetylenic acid derivatives. The structural identification of acetylenic acid analog was readily achieved by H1 NMR spectra and the molecular formula of the acetylenic acid was C16H28O2 was predicted. The methanol extract exhibited higher activity at 2gm/disc concentration when compared to the other concentration tested by disc diffusion method. The results of the study suggest that the antidermatophytic activity of Aristolochia bracteata could be attributed to the presence of acetylenic acid in the leaf fractions contributing to the antidermatophytic activity. However further studies are still required to know the exact concentration at which these fractions are effective for the development of herbal preparation that will be useful in the treatment of dermatophytic infections in the future.

KEYWORDS

Antidermatophytic, Phytochemical, Screening, Aristolochia bracteata.
Introduction

Traditional medicinal plants contain a wide range of phytocomponents that are used in the treatment of various infections. The medicinal value of these plants consist many chemical substances producing a variety of pharmacological properties. In the past few years; the incidence of dermatophytosis has been increasingly over the past few years. Dermatophytes refer to the infections involving skin, hair and nails to the superficial layers. They comprise closely related group of phylogenetic genera namely Trichophyton, Epidermophyton and Microsporum with numerous species. These agents affect the keratinized tissues and spread by direct contact from infected human beings (anthrophilic organisms), animals (zoophilic organisms) and soil (geophilic organisms) and by indirect way from fomites. The clinical signs of dermatophytosis vary depending on the affected region of the body. Due to the indiscriminate and prolonged use of some of the antifungal drugs, there are various drawbacks such as lack of fungicidal efficacy of the drug, emergence of resistant strains, and certain side effects. Hence, there is a need for a novel antifungal agent that is more effective and less toxic than those already existing.

Ethno medicinal plant preparations have been used to treat various infections in the past. Agar-based disk diffusion susceptibility method for dermatophytes is simple, inexpensive, and does not require specialized equipment (Singh et al., 2007). The disk diffusion method has a good correlation with the reference dilution assay. However data on disk diffusion methods for dermatophytes are scarce.

Aristolochia bracteata.L is a shrub distributed throughout India, belonging to the Aristolochiaceae family commonly called as “Worm killer (Aadutheendaapaalaiin Tamil). It is used in traditional medicines as a gastric stimulant and also in the lung inflammation, dysentery and snake bites. The Phytochemical analysis of this plant has revealed the presence of alkaloids, triterpenoids, steroids, sterols, flavonoids, tannins, phenolic compounds and cardio glycosides (Devesh et al., 2014; Kokate et al., 1995). In this present study, an attempt has been made for phytochemical screening and evaluation of antidermatophytic activity of this plant Aristolochia bracteata against dermatophytes by disc diffusion method (Deepa et al., 2012).

Materials and Methods

Preparation of Plant Extracts

The Aristolochia bracteata L was procured from the local siddha shop in Salem in the form of readymade powder. The entire content of the packet (10 gm) was used for this study. This plant powder was subjected to extraction process using Soxhlet apparatus with methanol (Alagesaboopathi, 2011). This extract was evaporated to dryness at reduced temperature and pressure in a rotary evaporator. The water extract of the powder was prepared by stirring the powder continuously in 20 ml distilled water for 6 hours at room temperature, filtered and the filtrate was subjected to reduced temperature and pressure in a rotary evaporator. Both the extracts were subjected to phytochemical screening for compounds followed screening for antimicrobial activity (Kavitha et al., 2009).

Preliminary Phytochemical Analysis

The Phytochemical analysis of the Methanol and Aqueous extracts were carried out using standard procedure following the method of Kokate et al., 1995 (Devesh et al., 2014).
Preparation of the Fungal Inoculum

The dermatophytic cultures were procured from the Medical microbiology Laboratory, Periyar University, Salem. The isolates used in this study were mainly the subcultures of the primary cultures maintained on to the Sabouraud dextrose agar (SDA) slants. The isolates included in this study were *T. rubrum*, *T. tonsurans*, *T. mentagrophytes* and *T. verrucosum*. The fungal inoculum was prepared by harvesting the spores by using sterile saline and adjusting the concentration by using Haemocytometer. The viability of the spores was checked by plating on to Sabouraud dextrose agar (SDA).

Antifungal activity of Plant Extract

Different concentrations of the plant extracts was prepared, dipped on to the Whatmann filter paper discs and air dried. The Sabouraud Dextrose agar (SDA) plates were prepared and the fungal inoculums were uniformly spread onto the plates and the disc containing the various concentration of the plant extracts were placed uniformly on to the plate. The plates were incubated at 28°C to 30°C for 5 days (Nweze et al., 2010). Ketoconazole drug was used as the positive control. The diameters of the zone of inhibition were measured and interpreted using standard chart.

Thin Layer Chromatography (TLC) & HPTLC Analysis of the Plant Extract

TLC glassplates were prepared using silica gel G60 and 0.25 mm slurry of silica gel G was applied in a glass plate by means of spreader previously cleaned with methanol. Plates were activated by applying heat at 100-110°C for an hour. Then Chloroform / methanol/ ethyl acetate (60: 40: 10 v/v) was used as a solvent system for the separation of bioactive compounds. The plates were developed up to 80-100 mm in development chamber saturated with selected solvent system.

Fresh samples were applied on precoated silica gel G60 aluminum sheets (5X10 cm) with the help of linomat applicator attached to HPTLC system programed through WIN CATS Software. After the sample was loaded, the migration distance was maintained up to 80mm from the lower edge of 10 mm which was performed at 200C with the suitable solvent system n-Hexane: ethyl acetate (60: 40 v/v) in a chamber. Then the plate was dried at 600C in an oven for 5mins. Densitometry scanning was performed with TLC scanner equipped with WIN CATS software. The dried plate was viewed under UV radiation and scanned by densitometer at 368nm.

Mass Spectra and H1 NMR Studies of the Plant Extract

The Mass analysis was performed using the Finnigan LTQ mass spectrometer (Thermo Electron, San Jose, CA) was used in the positive ion mode with an ESI source at SRM Institution, Chennai. The data processing was performed on the spectrometer. Chemical shifts were expressed by parts per million (ppm) from the residual solvent peak of 7.26 ppm for CDCl3 for 1H NMR.

Results & Discussion

The preliminary phytochemical analysis of *Aristolochia bracteata* was found to contain phenols, flavonoids, saponin and alkaloids. Sterol were absent in both the extracts. The methanol extract exhibited higher activity at 2gm/disc concentration when compared to the other concentration tested. The methanol extract exhibited strong antidermatophytic activity against *T. mentagrophytes*, *T. tonsurans*, and *T. verrucosum* indicating that methanol is a good solvent and can be used for the extraction process(Table- 1)(8).
Table.1 Antidermatophytic Activity of *Aristolochia bracteata* by Disc diffusion

<table>
<thead>
<tr>
<th>S.No</th>
<th>Name of the solvent</th>
<th>Concentration of Plant Extract</th>
<th>T. rubrum</th>
<th>T. tonsurans</th>
<th>T. mentagrophytes</th>
<th>T. verrucosum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Methanol</td>
<td>250 mg</td>
<td>NZ</td>
<td>NZ</td>
<td>NZ</td>
<td>NZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 mg</td>
<td>NZ</td>
<td>NZ</td>
<td>6mm</td>
<td>6mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1gm</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2gm</td>
<td>18</td>
<td>26</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>Water</td>
<td>250mg</td>
<td>NZ</td>
<td>NZ</td>
<td>NZ</td>
<td>NZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500mg</td>
<td>NZ</td>
<td>NZ</td>
<td>NZ</td>
<td>NZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1gm</td>
<td>12</td>
<td>13</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2gm</td>
<td>10</td>
<td>15</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Fluconazole</td>
<td>Positive Control</td>
<td>16</td>
<td>19</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Solvent Control</td>
<td>NZ</td>
<td>NZ</td>
<td>NZ</td>
<td>NZ</td>
<td>NZ</td>
</tr>
</tbody>
</table>

NZ- No zone of Inhibition

Table.2 The HPTLC analysis of the methanol extract of *Aristolochia bracteolata* at 368 nm with the area percentage

<table>
<thead>
<tr>
<th>Peak</th>
<th>Start Position</th>
<th>Start Height</th>
<th>Start Height</th>
<th>Max Position</th>
<th>Max Height</th>
<th>Max %</th>
<th>End Position</th>
<th>End Height</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.07 Rf</td>
<td>75.6 AU</td>
<td>0.09 Rf</td>
<td>268.4 AU</td>
<td>18.54 %</td>
<td>0.15 Rf</td>
<td>282.6 AU</td>
<td>7369.2 AU</td>
<td>29.45%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.31 Rf</td>
<td>12.4 AU</td>
<td>0.35 Rf</td>
<td>55.3 AU</td>
<td>4.36 %</td>
<td>0.38 Rf</td>
<td>71.3 AU</td>
<td>1253.4 AU</td>
<td>4.12%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.38 Rf</td>
<td>6.3 AU</td>
<td>0.43 Rf</td>
<td>69.1 AU</td>
<td>4.85 %</td>
<td>0.49 Rf</td>
<td>112.8 AU</td>
<td>3217.9 AU</td>
<td>9.65%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.86 Rf</td>
<td>112.9 AU</td>
<td>0.88 Rf</td>
<td>236.7 AU</td>
<td>15.96 %</td>
<td>0.81 Rf</td>
<td>253.4 AU</td>
<td>3986.8 AU</td>
<td>12.55%</td>
<td></td>
</tr>
</tbody>
</table>

Figure.1 HPTLC analysis of the methanol extract of *Aristolochia bracteolate* showing 4 peaks from the developed chromatogram at 368 nm
Figure 2 Molecular structure of acetylenic acid as predicted by H1 NMR

The HPTLC analysis showed 4 peaks from the developed chromatogram of *Aristolochia bracteolata* at 368 nm (Fig 1). The four different components present in the methanol extract with the corresponding Rf value with the area percentage are tabulated (Table-2).

The mass studies of the methanol extract showed 17 compounds based on the m/z parent peaks. The graph for 1H NMR showed that the chemical shift values at 2.2 ppm, 3.6 ppm, 6.7 ppm and 7.2 ppm. Based on this interpretation, the structural identification of acetylenic acid analog was readily achieved by careful comparison of H1 NMR spectra and the molecular formula of acetylenic acid C16H28O2 was predicted by comparing NIST Chem web library. The molecular structure of acetylenic acid is shown in (Fig 2).

Conclusion

HPTLC fingerprinting method was found to be more precise and accurate method for compound identification. The results of the present study suggest that the antidermatophytic activity of the leaf of *Aristolochia bracteolatais* attributed due to the presence of acetylenic acid which was evident by the mass spectra. However further studies are required to assess the exact concentration in which these extract should be given for the effective treatment of dermatophytosis in the future.

Acknowledgements

We express our Sincere thanks to the Dean IRT Medical College, Perundurai, patients, and doctors for this study. We extend our thanks to Alpha omega Hitech laboratory, Gorimedu, Salem, India for the analysis made in this study.

References

How to cite this article:

doi: http://dx.doi.org/10.20546/ijcrar.2016.405.003