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Introduction 
 

Nanoparticles (NPs) or Nanomaterials are 

the materials having the size less than 

100nm that can be nanoscale in one 

dimension (e.g. films), two dimensions 

(fibres and tubes) or three dimensions 

(particles). Many theories have been 

proposed to explain the toxicity 

phenomenon of nanoparticles including, 

generation of Reactive Oxygen Species 

(ROS), which  can  disrupt cell structures, 

interference with normal metabolism (Nel et  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

al. 2006, Choi and Hu, 2009), binding with 

macromolecules making them dysfunctional 

(Gogoi et al. 2006). However, the real 

impact of nanoparticles and their mechanism 

of reactions against biological system are 

still not known. Researchers have provided 

evidence for NP-mediated production of 

ROS and generation of oxidative stress as a 

possible mechanism of toxicity 

(Oberdorster, 2005, Pickering and Wiesner, 

2005, Zeng et al. 2015) especially for  

A B S T R A C T  
 

Recently the ability of engineering of nanoparticles and to produce 

nanomaterials at the nano or near-atomic scale has triggered their rapid 
production due to their interesting properties that were not previously seen at 

scales above the micrometers. The exponential demands of nanosized 

materials with use of nanoparticles have been increased in industrial 
applications. With increasing use of nanoparticles in a variety of consumer 

goods, biological systems are constantly exposed to such nanomaterials 

besides exposure at production sites. This unintended exposure to 

nanomaterials may occur via inhalation, dermal exposure or gastrointestinal 
tract absorption and may pose a great risk to environment. However, there are 

still widespread controversies and ambiguities with respect to the toxic effects 

and mechanism of action of enginnered nanoparticles in biological systems. 
The present study reviewed toxicological studies of engineered nanoparticles 

in biological systems. 
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carbonanceous nanoparticles (i.e. fullerenes, 

fullerols and carbon nanotubes) and 

nanoparticulate like titanium dioxide and 

zinc oxide (Reeves et al. 2008). NPs of TiO2 

and ZnO are widely used in sun care 

products (Serpone et al. 2007), as well as on 

self cleaning coatings (Cai et al. 2008) that 

may released in to environment and become 

a threat to ecosystems.   

     

Toxicity of NPs in Animal Model System 

 

Federici et al. (2007) observed series of 

physiological effects induced by TiO2-NPs 

in Rainbow trout  Oncorhynchus mykiss. 

Further, Baun  et al. (2008) observed  toxic 

effects of TiO2 and ZnO-NPs on  algae 

Pseudokirchneriella subcapitata, 

Crustaceans Daphnia magna and 

Thamnocephalus platyurus and bacteria 

Vibrio fischeri (Heinlaan et al. 2008).  

Toxicity of nanoparticles of  silver, 

platinum, carbon nanotubes on  terrestrial 

animals was also observed by  Dani et al. 

(2008); Johansen (2008); Petersen et al. 

(2009) and  Reeves et al. (2008). 

Invertebrates are able to intake 

nanomaterials dispersed in the environment 

by different ways: direct ingestion; from 

contaminated preys; water filtration; 

inhalation and surface contact. Some degree 

of bio-modification was also  observed in  

daphnids (Oberdorster et al. (2005); Roberts 

et al. (2007)  and Baun et al. (2008). 

Compartmentalization of nanosized 

contaminants in selected tissues and in 

organelles has been documented by Moore 

et al. (2006); Li et al. (2011); Jaiswal et al. 

(2003); Kohler et al. (2008) and  Oberdoster 

et al. (2002).  

 

The Rotifer Brachionus Calyciflorus was 

studied under exposure to nanomaterials as a 

component of simplified food web, algae 

and bacteria. Those were predated by a 

protozoans which in turn was the rotifer 

prey and both were  fed  by fish (Holbrook 

et al. 2008). Acute and chronic toxicity  was 

observed by  Borgmann et al. (2005) in 

Hyalella azteca (Family Hyalellidae) and 

Leptocheirus plumulosus (Family Aoridae) 

shrimps inhabited on  fresh water and feed 

on sediment or suspended particles. Griffitt 

et al. (2008), reported lethality in three 

different aquatic organisms namely, algae 

(Pseudokirchneriella subcapitata), 

Daphnids (Daphnia pulex, Ceriodaphnia 

dubia) and fish (Danio rerio) on exposure of 

Ag-NP and Cu-NP. They also  demonstrated 

that copper and silver nanoparticles are 

acutely toxic to wide spectrum of aquatic 

species including zebra fish. This toxicity is 

largely manifest at the gills and were not 

affected simply by particles dissolution. 

Moore (2006) stated that engineered 

nanoparticles are likely to be deposit in 

aquatic systems and represent a possible 

danger to aquatic life. Both dissolved and 

particulate nanoparticles enhanced 

deposition of metals in gills. Branchial 

uptake of ionic silver and copper 

nanoparticles has been well documented in 

freshwater fish by Bury and Wood (1999) 

and proposed several mechanisms to 

enhanced silver levels in gills. NPs may be 

trapped in the mucus layer of the gill as 

demonstrated for larger particles by Dani  et 

al. (2008)  and Connor et al. (2005).   

 

The sediment particles less than 500 nm 

were observed intracellularly in salmonid 

gill epithelial cells  by Martens and Seruizi, 

(1993). Morgan et al. (2004) observed 

significant increase in whole body silver 

content on exposure of silver NPs. However, 

it not clear either is due to translocation of 

silver through gills or due to ingestion of 

particulates and gastro Intestinal (GI) 

absorption. Soluble copper is a well known 

gill toxicant in freshwater fish species 

(Mazon et al., 2002) and causes significant 

thickening in gill filament (Griffitt et al. 
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2008). Morgan et al. (1997) reported silver 

as most potent gill toxicants in freshwater 

fish and caused  highly specific inhibition of 

Na+/K±  ATPase. Dabbousi et al. (1997) 

observed change in morphology in spiny 

dogfish, a marine elasmobranch on exposure 

of Ag-NPs. 

 

Common Animal Model System used for 

Nanotoxicity Test 

 

Usually Daphnids (Daphnia magna, 

Daphnia pulex and Ceriodaphnia dubia) 

preferred as first choice for eco-

toxicological tests of nanoparticles (Joncxyk 

and Gilron, 2005). Benthic organisms 

(cnidarian Hydra attenuate) are also used 

(Dabbousi et al., 1997; Blaise and Kusui 

1997; Holdway, 2005) for long term toxicity 

studies. Their clubbing movements of 

tentacles are observed as early signs of 

exposure to toxic agents, before 

reproductive changes or death.  

 

Impact of  Metal Nanoparticles on 

Earthworms 

  

Mc Shane et al. (2010) recorded the 

exposure of 10,000mg TiO2/kg soil not 

significantly affected the biomass of Eisenia 

spp. In contrast, Hecknann et al. (2008) 

reported a 49% reduction in the number of 

juveniles produced by E. fetida following 

28d of exposure to 1,000 mg TiO2/kg soil. 

Recent nano-ecotoxicological studies 

indicates so far that increasing dose provides 

an increase in response, although this may 

not follow traditional mass based dose-

respose relationships (Oberdorster et al. 

2005). Ni-NP had a much lower toxicity to 

E. fetida than NiCl2 possibly due to a strong 

agglomeration of the Ni particles combined 

with little or no oxidation of the NP-Ni 

particle (Besenbacher and Norskov, 1993). 

There was also a tendency of increased 

biomass was reported by  Gurr et al. (2005) 

for  Cu-NP, and Ni-NP exposed worms. 

Very limited information is available for 

toxicity tests of nanoparticles (TiO2-NP; Ag 

NO3, Al2O3, SiO2, TiO2, ZnO2 ) against 

earthworms  except few including Hu et al. 

(2010); Petersen et al. (2008). Oberdorster et 

al. (2004) demonstrated NPs may affect soil 

ecosystem via: 1) direct effect; 2) changes in 

the bioavailability of toxins or nutrients; 3) 

indirect effects resulting from their 

interaction with natural organic compounds; 

4) interaction with toxic organic compounds 

which may amplify or alleviate their 

toxicity. It was also observed earthworms 

are able to differentiate particles through 

unknown mode of action (McShane et al., 

2006). Gomes et al. (2012) demonstrated 

NPs altered mRNA levels for specific genes 

mainly involved in metabolism, 

transcription and translation or in the stress 

response and generates oxidative stress 

conditions. The  reduction in growth and 

development, damaged cuticle with 

underlying pathologies of epidermis, 

muscles and gut barrier on exposure of 

fullerene NPs (C60) to Lumbricus rubellus 

was reported by Vander Ploeg et al.,(2013). 

Li et al. (2011) observed Eisenia fetida  

shown neither response of antioxidant 

enzyme expression or activity nor acute 

toxicity in C60 spiked soil.  We studied 

effect of ZnO-NPs (Gupta et al., 2014).  on 

E. fetida in terms of reproductive behavior, 

antioxidant enzyme activities and 

accumulation of Zn
++

 remote from portal of 

entry. It may concluded that interaction of 

nanoparticles with earthworm is 

unpredictable that may result in ecologically 

significant effects on behavior at 

environmentally relevant concentrations. 

 

Biological Uptake and Mechanisms of 

toxicity 

                           

Published quantitative research on uptake 

and accumulation of NPs by whole 
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organisms is very limited. It is known that 

organisms living in NPs containing 

environments incorporate them within their 

bodies, mainly via the gut (Baun et al. 2008; 

Roberts et al. 2007) with a possibility of 

translocation within the body. Most of the 

initial work, in this area was undertaken on 

standard animal models (daphnids) used in 

ecotoxicology. Feng et al. (2005) 

demonstrated the uptake of fluorescent 

carboxylated NPs by Daphnia magna and 

translocation from the gut to reserve fat droplets. 

Some NPs such as quantum dots and CNTs( 

carbon nanotubes) are intentionally designed to 

interact with proteins, nucleic acids or cell 

membranes for labeling or drug delivery purposes 

(Gao et al. 2008; Medintz et al. 2008).  The 

toxicity mechanisms have not yet been 

completely elucidated for nanoparticles. Possible 

mechanisms includes disruption of membranes or 

membrane potential, oxidation of proteins, 

genotoxicity, and interruption of energy 

transduction, formation of ROS and release of 

toxic constituents.. Meng et al (2007) reported 

NPs first, adhered to the surface alter the 

membrane properties, therefore affecting the 

permeability and the respiration of the cell, they 

can penetrate inside cell and caused DNA 

damage and they can  also release toxic Ag+ ions. 

Degradation of lipo-polysaccharide molecules 

forms pits in the membrane that changes 

membrane permeability due to silver 

nanoparticles as reported by Moore et al. (2006). 

Gold nanoparticles (AuNP) can easily enter 

into cells (Connor et al. 2005)  and bind 

strongly to  amine and thiol groups of cells   

that  enabled their surface modification with 

amino acids and proteins (Oberdorster 

2001;Ville et al.,1995). 

 

Impact of NPs in biological system 

 

Damage to membrane integrity  

 

The imaging applications of NPs are mainly 

targeted on cell membrane.  NPs attached to 

cell surface and compromise  with the 

integrity and functions of the cell 

membrane. Silicon (Si) NPs and fullerene 

derivatives can embed themselves in the 

membranes (Zang et al. 2015). 

Carboxyfullerene puncture bacterial cell 

membrane in a gram positive bacterial strain 

and causes  cell death (Huang et al.,2001). 

Ingle et al. (2008) reported Au-NPs  weaken 

cell membranes and causes heat shock 

responses in Escherichia coli. NPs can also 

indirectly causes membrane damage through 

the generation of ROS which can oxidize 

double bonds on fatty acid tails of 

membrane phospholipids in a process 

known as lipid peroxidation.This increases 

membrane permeability and fluidity, making 

cell more susceptible to osmotic stress or 

hindering nutrient uptake (Cabiscol et al., 

2000). Peroxidized fatty acids may trigger 

reactions that generate other free radicals 

leading to more cell membrane and DNA 

damage (Valembois et al.,1994). 

 

Protein destabilization and oxidation 

 

NPs-protein interactions have been 

optimized for a variety of biomedical 

applications. As quantum dots are used to 

target and fluorescently label proteins for 

imaging (Jaiswal et al. 2003; Medintz et al. 

2005). Oberdorster et al. (2004) observed 

ROS can also lead to the formation of 

disulfide bonds between sulfur containing 

amino acids thus disturbing the structure and 

function of the protein.  

 

Nucleic Acid damage 

 

 Interactions of NPs with nucleic acids have 

applications in DNA labeling or DNA 

cleavage. The tagged nucleotides with NPs 

especially quantum dots commonly used as 

labeling agents for bioimaging applications 

(Dyadyusha et al., 2005;Dubertret et al., 

2002). Cabiscol et al. (2000) observed some 
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NPs indirectly damage DNA because of 

ROS production, which breaks DNA strand, 

cross linking and adducts of bases or sugars. 

Mson et al. (2006) stated TiO2NPs 

generates oxygen radicals that can nick 

supercoiled DNA. Scientific committee on 

Emerging and Newly Identified Health 

Risks, (2007) shown possibility of tumor 

formation through DNA damage and 

increase in cell proliferation associated with 

inflammation. 

 

Cell disruption due to ROS 

 

NPs induces ROS that may damage every 

cell component, and this interaction tends to 

trigger further radical formation.   

 

Interruption of Energy transfer 

 

Electron transport phosphosylation and 

energy transduction processes may be 

disrupted if membrane integrity is 

compromised or if a sensitive NPs contacts 

membrane bound electron carriers and 

withdraws electrons from the transport 

chain. Fullerene derivatives have been 

reported to inhibit E. coli respiration of 

glucose by Mc Shane and Ritter 2010). 

 

Release of toxic components from NPs 

 

Certain NPs causes toxicity to bacterial cells 

by releasing harmful components, such as 

heavy metals or ions. Quantum dots are 

semiconductor nano-crystals that contain 

noble or transition metals such as CdSe, 

CdTe, CdSeTe, Zn Se. In As or PbSe in their 

Core, CdS or ZnS in their shell, and an 

organic coating (Dubertret  2002).. Release 

of silver ion has been implicated in toxicity 

of silver NPs. It is believed that silver ions 

interact with thiol groups of proteins, 

resulting in inactivation of vital enzymes 

(Matsumura et al., 1996). Silver ions have 

also been shown to prevent DNA replication 

and affect the structure and permeability of 

the cell (Feng  et al. 2000). 

 

Conclusions  

 

We discussed the toxicity studies of 

engineered nanoparticles in biological 

systems. Researchers observed toxicity of 

nanoparticles at different levels and it 

depends especially, on size and composition 

of nanoparticles. However, the mechanism 

of their action in biological system is not 

very clear. It is essential to decrease toxicity 

of engineered nanoparticles at non-

significant level to ensure safe application of 

nanoparticles to organisms and to the 

environment. Further, understanding of 

human health implications and ecological 

consequences in environment at exposure of 

unintended engineered nanoparticles is 

essential before the commercial benefits of 

these nanomaterials fully realized.  
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